Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry
نویسندگان
چکیده
The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).
منابع مشابه
Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry.
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) represents a powerful tool for the analysis of biomolecules, synthetic polymers, and even small organic compounds; its performances largely depend on the type of matrix materials utilized. Here, for the first time the employment of nanoporous carbons derived from metal-organic frameworks (MOFs) as novel matrices for SALDI...
متن کاملToward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration
Although metal-organic frameworks (MOFs) have widely demonstrated their convenient performances as drug-delivery systems, there is still work to do to fully understand the drug incorporation/delivery processes from these materials. In this work, a combined experimental and computational investigation of the main structural and physicochemical parameters driving drug adsorption/desorption kineti...
متن کاملInfluence of amine group on the adsorptive removal of basic dyes from water using two nanoporous isoreticular Zn(II)-based metal organic frameworks
Dyes are the most abundant hazardous components existing in the environment because of their extensive use in industries. So, in the present study, two isoreticular Zn(II)-MOFs, TMU-16 and TMU-16-NH2, were used for the adsorptive removal of harmful cationic dyes from aquatic medium. In order ...
متن کاملMWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property
In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...
متن کاملNovel Porous Iron Molybdate Catalysts for Synthesis of Dimethoxymethane from Methanol: Metal Organic Frameworks as Precursors
As a novel performance, methanol gas conversion to dimethoxymethane (DMM) in one-step based on Fe-Mo-O (iron molybdate mixed oxides) catalysts with high surface area fabricated by metal organic frameworks (MOFs) precursors was improved. For this approach, at first, Fe(III) precursors (iron (III) 1,3,5-benzenetricarboxylate (MIL-100 (Fe) and iron terephthalate (MOF-...
متن کامل